Biochemical and Structural Evidence in Support of a Coherent Model for the Formation of the Double-Helical Influenza A Virus Ribonucleoprotein

نویسندگان

  • Qiaozhen Ye
  • Tom S. Y. Guu
  • Douglas A. Mata
  • Rei-Lin Kuo
  • Bartram Smith
  • Robert M. Krug
  • Yizhi J. Tao
چکیده

UNLABELLED Influenza A virions contain eight ribonucleoproteins (RNPs), each comprised of a negative-strand viral RNA, the viral polymerase, and multiple nucleoproteins (NPs) that coat the viral RNA. NP oligomerization along the viral RNA is mediated largely by a 28-amino-acid tail loop. Influenza viral RNPs, which serve as the templates for viral RNA synthesis in the nuclei of infected cells, are not linear but rather are organized in hairpin-like double-helical structures. Here we present results that strongly support a coherent model for the assembly of the double-helical influenza virus RNP structure. First, we show that NP self-associates much more weakly in the absence of RNA than in its presence, indicating that oligomerization is very limited in the cytoplasm. We also show that once NP has oligomerized, it can dissociate in the absence of bound RNA, but only at a very slow rate, indicating that the NP scaffold remains intact when viral RNA dissociates from NPs to interact with the polymerase during viral RNA synthesis. In addition, we identify a previously unknown NP-NP interface that is likely responsible for organizing the double-helical viral RNP structure. This identification stemmed from our observation that NP lacking the oligomerization tail loop forms monomers and dimers. We determined the crystal structure of this NP dimer, which reveals this new NP-NP interface. Mutation of residues that disrupt this dimer interface does not affect oligomerization of NPs containing the tail loop but does inactivate the ability of NPs containing the tail loop to support viral RNA synthesis in minigenome assays. IMPORTANCE Influenza A virus, the causative agent of human pandemics and annual epidemics, contains eight RNA gene segments. Each RNA segment assumes the form of a rod-shaped, double-helical ribonucleoprotein (RNP) that contains multiple copies of a viral protein, the nucleoprotein (NP), which coats the RNA segment along its entire length. Previous studies showed that NP molecules can polymerize via a structural element called the tail loop, but the RNP assembly process is poorly understood. Here we show that influenza virus RNPs are likely assembled from NP monomers, which polymerize through the tail loop only in the presence of viral RNA. Using X-ray crystallography, we identified an additional way that NP molecules interact with each other. We hypothesize that this new interaction is responsible for organizing linear, single-stranded influenza virus RNPs into double-helical structures. Our results thus provide a coherent model for the assembly of the double-helical influenza virus RNP structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyclonal Antibody against Recombinant Nucleoprotein of the Influenza A Virus (H1N1); Production and Purification

Background and Aims: Influenza is an acute respiratory illness that is caused by a virus belonging to Orthomyxoviridae family. This virus spreads rapidly every year in cold season and leads to morbidities and mortalities especially in adults and children, which causes billions of dollars of economic losses. Accordingly, development of a rapid, sensitive and inexpensive laboratory diagnosis base...

متن کامل

Construction of Influenza A/H1N1 Virosomal Nanobioparticles

Background and Aims: Influenza is one of the main respiratory infections of humans, responsible for 300,000–500,000 annual deaths world-wide. Vaccination is one of the best ways to prevent infections including influenza. Influenza virosomes are virus-like particles, which retain the cell binding and membrane fusion properties of the native virus, but lack the ribonucleoprotein (RNP). A vi...

متن کامل

Genetic and phylogenetic analysis of the ribonucleoprotein complex genes of H9N2 avian influenza viruses isolated from commercial poultry in Iran

BACKGROUND: The H9N2 subtype of avian influenzaviruses (AIVs) has been isolated in multiple avian species inmany European, Asian, African and American countries. Sincethe first outbreak of H9N2 virus in Iran in 1998, this virus haswidely circulated throughout the country, resulting in majoreconomic losses in chicken flocks. Several amino acids in thevirus ribonucleoprotein (RNP) complex includi...

متن کامل

Applying conserved peptides of NS1 Protein of avian influenza virus to differentiate infected from vaccinated chickens

Avian influenza (AI) is a highly contagious disease in poultry and outbreaks can have dramatic economic and health implications. For effective disease surveillance, rapid and sensitive assays are needed to detect antibodies against AI virus (AIV) proteins. In order to support eradication efforts of avian influenza (AI) infections in poultry, the implementation of “DIVA” vaccination strategies, ...

متن کامل

Characterization of Nucleoprotein Extracted from Human Influenza A Virus Cultured in Two Different Cell Lines

Background and Aims: Influenza virus nucleoprotein (NP) has the capacity to be used as subunit vaccine, but little is known about the impact of different cultures on its structure. In the present study we aimed to evaluate and compare the Isoelectric focusing (IEF) property of extracted viral nucleoproteins derived from Madin Darby canine kidney (MDCK) cell line and embryonated chicken eggs (EC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012